Homoclinic snaking near the surface instability of a polarizable fluid

نویسندگان

  • David J.B. Lloyd
  • Christian Gollwitzer
  • Ingo Rehberg
  • Reinhard Richter
چکیده

We report on localized patches of cellular hexagons observed on the surface of a magnetic fluid in a vertical magnetic field. These patches are spontaneously generated by jumping into the neighborhood of the unstable branch of the domain covering hexagons of the Rosensweig instability upon which the patches equilibrate and stabilise. They are found to co-exist in intervals of the applied magnetic field strength parameter around this branch. We formulate a general energy functional for the system and a corresponding Hamiltonian that provides a pattern selection principle allowing us to compute Maxwell points (where the energy of a single hexagon cell lies in the same Hamiltonian level set as the flat state) for general magnetic permeabilities. Using numerical continuation techniques we investigate the existence of localized hexagons in the Young-Laplace equation coupled to the Maxwell equations. We find cellular hexagons possess a Maxwell point providing an energetic explanation for the multitude of measured hexagon patches. Furthermore, it is found that planar hexagon fronts and hexagon patches undergo homoclinic snaking corroborating the experimentally detected intervals. Besides making a contribution to the specific area of ferrofluids, our work paves the ground for a deeper understanding of homoclinic snaking of 2D localized patches of cellular patterns in many physical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snaking of Multiple Homoclinic Orbits in Reversible Systems

We study N -homoclinic orbits near a heteroclinic cycle in a reversible system. The cycle is assumed to connect two equilibria of saddle-focus type. Using Lin’s method we establish the existence of infinitely many N -homoclinic orbits for each N near the cycle. In particular, these orbits exist along snaking curves, thus mirroring the behaviour one-homoclinic orbits. The general analysis is ill...

متن کامل

Eckhaus instability and homoclinic snaking.

Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable, spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. This behavior is simplest to understand within the subcritical Swift-Hohenberg equation, but is also present in the subcritical regi...

متن کامل

Numerical study of secondary heteroclinic bifurations near non-reversible homoclinic snaking

We discuss the emergence of isolas of secondary heteroclinic bifurcations near a non-reversible homoclinic snaking curve in parameter space that is generated by a codimension-one equilibrium-to-periodic (EtoP) heteroclinic cycle. We use a numerical method based on Lin’s method to compute and continue these secondary heteroclinic EtoP orbits for a well-known system.

متن کامل

Homoclinic snaking in bounded domains.

Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of ho...

متن کامل

Weakly subcritical stationary patterns: Eckhaus instability and homoclinic snaking.

The transition from subcritical to supercritical stationary periodic patterns is described by the one-dimensional cubic-quintic Ginzburg-Landau equation A(t) = μA + A(xx) + i(a(1)|A|(2)A(x) + a(2)A(2)A(x)*) + b|A|(2)|A - |A|(4)A, where A(x,t) represents the pattern amplitude and the coefficients μ, a(1), a(2), and b are real. The conditions for Eckhaus instability of periodic solutions are dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015